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The cohesive energy of the potassium halides has been calculated for different assumed form for the interaction potential 
energy. In the present paper the three-body force shell model (TBFSM) have been used for calculation of cohesive energy 
of KX (X=F, Cl, Br & I) crystal. The used model has found to posses some remarkable features. The nearest and next-
nearest neighbour interactions as well as van der Waals interactions are taken into account to evaluate the cohesive energy 
that has given good agreement with experimental results. The value of cohesive energy already performed By Sharma [1] 
but some error has been found .So by use of present model we can out com from such error. In the present paper value of 
cohesive energy also compared with Sarkar & Sengupta [2] and with three-body potential by Basu & sengupta [3].The 
atomization energy also reported for potassium halides crystal by using the value of cohesive energy. The obtained results 
are found to be in close agreement with experimental result.   
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1. Introduction  
 

Solids have stable structures, and therefore it exist 

interactions holding atoms in a crystal together. NaCl type 

crystal structure which is more stable than a collection of 

free Na and Cl atoms. It implies that the Na and Cl atoms 

attract each other, i.e. there exist an attractive interatomic 

force, which holds the atoms together. This also implies 

that the energy of the crystal is lower than the energy of 

the free atoms. The amount of energy, which is required to 

pull the crystal apart into a set of free atoms, is called the 

cohesive or dissociation energy of the crystal. 

 
Cohesive energy = energy of free atoms –crystal energy 

 

Magnitude of the cohesive energy varies for different 

solids from 1 to 10 eV/atom, except inert gases in which 

the cohesive energy is of the order of 0.1eV/atom. As for 

as cohesive energy is concerned the charge –charge and 

overlap terms are most important. The cohesive energy 

controls the melting temperature. The cohesive energy and 

other properties of alkali halide crystal have been 

calculated by assuming different forms for potential 

energy function. The important interactions are 

electrostatics, Van der Waals forces, overlap and 

polarization. Inclusion of all these interaction terms makes 

the potential function fairly complicated. The three-body 

force shell models (TBFSM) have developed by Verma & 

Singh [4] by including the charge transfer mechanism in 

the framework of Rigid Shell model (RSM). Its 

development is based on the postulate that when the two 

ions come closer to each other during lattice vibrations, 

their electron shells overlap and the spherical distribution 

is deformed. This deformation leads to the appearance of 

multipoles. If a third ion is present near the former two 

ions, the charge of the shells of the third ion interacts with 

these multi poles. This multi pole-charge interaction 

recognized as the many-body interaction whose FC three-

body components seem to play the most dominant role. 

The existence of three-body interactions (TBI) have very 

well established by Lowdin [5] and Lundqvist [6]. An 

expression for the contribution of TBI to the dynamical 

matrix has been rigorously derive and exactly evaluated by 

Verma & Singh [4] for NaCl-structure and by Lal & 

Verma [7] for CsCl- structure. 

 

 

1.1. Theory of TBI 
 

According to quantum-mechanical theory using 

Heitler London approximation [8], the atomic wave 

functions are treated rigidly connected with their nuclei 

and supposed not to change in a deformation of the 

lattices. These effects lead to the non-orthogonality of the 

one-electron wave functions. As a natural consequence of 

the anti symmetry requirement on the wave function [8], 

this alteration in the electronic charge density causes a 

charge depletion which depends on the inter nuclear 

separation and interacts with all other charges via 

Coulomb force law and give rise to long-range TBI 

introduced by Lowdin[5] and Lundqvist [6]. 
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[Ionic Charges of A & B and third distant ion C modifies and 

produces three–body forces on them] 

 
Let us consider a number of atoms or ions at the sites 

L=1, 2 etc. At every site L we have positive nucleus of 

charge Le and number nL of electrons such that ZL(=L-

nL) is the net ionic charge at L. The number density n )(r
  

of electrons in the crystal can be expressed as: 
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Here nL )(r
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
   represents the electron 

distribution in a free ion at the position L and n )(r
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gives the deviations from the distribution. According to 

Lundqvist,  

identical to the overlap integrals. Its value is given by 
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Here,  are the normalized one-electron wave-functions 

including spin such that x=(r, ); the index  refers to an 

electron with quantum numbers n, l, m and  associated 

with an ion at a certain lattice point L. .The expression for 

the modified Coulomb energy for the whole crystal can be 

written as: 
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where the first term is the well known Coulomb potential. 

The second term is purely TBI energy given by:           
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in Eqn. (5) it is clearly indicate that the inclusion of TBI 

modifies the Coulomb part of classical energy by a factor 

{1+(2n/Z) f(r)}0.In NaCl-type lattice, since each ion is 

surrounded by six nearest - neighbours of opposite type, 

therefore, the modified ionic charge becomes [16] Zme= + 

(Z+6f0)e. The TBFSM described above has been 

extensively applied by Singh & Verma [4,10] and their 

associates to describe successfully lattice dynamics of 

alkali halides [4,10,11]. The effects of TBI on the cohesive 

energy of ion crystals have been investigated by Sharma et 

al.[1] and Singh and Nirwal [12,13]. The effects of TBI 

have been found to be important in the study of lattice 

dynamics of rare gas solids [14, 15]. 

 
1.2 Coulomb interaction potential 

 

The Coulomb interaction potential is long-range in 

nature an ionic crystal to consist of N-positive and N-

negative ions separated by a distance
ijr


, where ijr


 is a 

vector joining the ions i and j. where the prime means 

summation over all ions except i=j, ij will be +1, if i and 

j are like ions and –1, if they are unlike, e is the electronic 

charge. Thus, the Coulomb potential energy for the whole 

crystal is given by 
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where n1, n2, n3 are the integers and r0 is the equilibrium 

nearest neighbour distance.  

 

 

1.3 The repulsive potential 

 

The most commonly used analytical expression for 

the repulsive energy are given by the inverse and 

exponential power laws such that 

 
n

ijij
R Ar)r(


 (Born Potential)          (7) 

)/rexp(b)r( ijij
R   (Born-Mayer Potential) 

(8) 

Where A (or b) and n(or ) are the Born exponents called 

the strength and hardness parameters, respectively. In 

order to take explicit account of the B-M repulsion of the 

second-neighbours in the ionic crystal, a possible 

extension of the expression (8) to the second-neighbour 

yields the repulsive energy [17,18]. 
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(9) 
 

where M and M' are the number of first and second-

neighbours and r' is the distance between the second 

neighbours. ij are the Pauling coefficients known 

compressibility factor  [17,18].Thus potential parameters 

in the case of Born–Mayer potential for NaCl type 

structure given as 
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Here r0 is the nearest neighbors distance in the lattice at 

equilibrium is the Madelung’s constants and e is electronic 

charge. 

 

 

1.4 Van der Waals potential 

 

The instantaneous dipole moment of a closed shell 

atom induces a dipole moment on a similar atom and the 

interaction energy thus arising is known as the van der 

Waals interaction (VWI) potential denoted by 
v
(r).The 

potential energy due to these two dipole moments parallel 

to each other is given by 
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According to the quantum theory of perturbation [19,20], 

VW energy due to d-d and d-q interactions is expressed as: 
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where i and j are the crystal electronic polarizabilities of 

the i and j ions, respectively. Ei and Ej are the appropriate 

excitation energy parameters; niand nj are the effective 

number of electrons in the ions necessary to account for 

the actual polarizabilities; cijand dij are constants. The 

cohesive energy per unit cell at nearest neighbor r , 
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Where e is electronic charge; rij are the interionic 

separation and van der Waal coefficient defined by c. The 

cohesive energy per mole is calculated by. 

 

  0  rNW ,                     (15) 

 

where N as the Avogadro number and ε0 is the zero point 

energy per mole. The calculated Zero –point energy with 

vdW and TBI have been given by [12]. 
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Here ћ is plank’s constant and vibrational frequency 

for zero point is υ0. 

Values enclosed in ( ) represent deviation between 

experimental and theoretical results. The study about the 

stability of crystals known well by atomization energy so 

we have calculated the atomization energy     
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Where Є is atomization energy, Є
’ 
and I are the electron 

affinity of anions and ionization energy of cations 

respectively. 

 
 

2. Result and discussion 
 

The binding in ionic crystals have been explained by 

calculating their cohesive energy from a large number of 

interatomic interaction potentials. The potentials are 

adequately successful to describe the lattice static and 

dynamic properties of perfect and defect ionic crystals.  

The calculated cohesive energy by using TBI much better 

reproduction that reported by [1] whose result have been 

large deviation approx 15%. From Fig. 1 comparative 

graph for cohesive energy shows the betterment of present 

model. After inclusion of vdW with TBI good agreement 

established between theoretical and experimental result 

given in Table-1. By using atomization energy graphs 

from Fig. 2 it shows that for KF atomization energy value 

is low using the value of cohesive energy reported by 

Sharma [1] but very low for sarkar [2] and for other values 

KI, KCl and KBr, appearing deviations are within the 

range of 10% and it shows the accuracy of present model 

to describe the cohesive energy and stability for potassium 

halides. The calculated atomization energies by using 

present model in Table2 has given excellent agreement 

with experimental data. The other important structural 

properties of potassium halides and other alkali halides 

crystal reported by different researchers [24-31] that will 

be helpful for complete theoretical investigation about 

alkali halide crystals.  

 
Table 1. Cohesive energy of Potassium Halides in (kcal/mole). 

 

Crystal Calculated Cohesive energy with 

[TBFSM] 

Calculated Cohesive energy with vdW 

and TBFSM  

Experimental 

Values [21] 

SHARMA et al 

[1] 

Present Work SARKAR & 

SENGUPTA [2] 

Present Work  

KF 177.1(-6) 180.5  ----------- 179.7 189.8 (194.5) 

KI 112.0(-25) 137.5 (-7.0) 154.0 146.3 149.9 (151.1) 

KCl 143.7(-13) 160.3 (-4.1) 171.3 154.9 165.8 (169.5) 

KBr 129.2(-18) 140.2 (-5.1) 163.5 152.6 158.5 (159.3) 
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Fig. 1.Cohesive energy of Potassium Halides in Kcal/mole. 

 

Table 2. Atomization energy (kcal/mole) of potassium halides. 

 

Crystal Atomization energy value 

Experimental 

Calc. atomization energy 

with vdW and TBFSM  

Atomization 

energy using 

value of   

Atomization energy 

using value of  

Є
’     

Ref. [22] I  Ref [23]  Present Work Sharma et al [1] Sarkar & Sengupta [2] 

KF 79.5 100.0 159.2 156.5 20.5 

KI 70.6 100.0 116.3 82.6 124 

KCl 83.2 100.0 138.1 126.9 154.3 

KBr 77.5 100.0 130.1 106.7 141 

 

 
Fig. 2. Calculated Atomization Energy for KF, KI, 

KCl and KBr. 
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